ANALYSIS OF TWITTER SOCIAL MEDIA FUNCTIONS IN RESPONDING TO THE CIANJUR EARTHQUAKE IN INDONESIA
DOI:
https://doi.org/10.18326/inject.v9i2.735Keywords:
Earthquake Disaster, Twitter, Social media, Public ResponseAbstract
Social media Twitter as a place to respond disaster events that build an effective place to disseminate the latest information and communication users to discuss the current disaster. This research focuses on exploring the intensity of tweets related to analyzing the disaster content of tweets in discussions of the Cianjur earthquake on Twitter social media. This research uses a Qualitative Data Analysis (QDA) approach, which helps to know the network, content, and cloud using the Nvivo 12 Plus software. The study results stated that the intensity of the conversation on Twitter social media related to the Cianjur earthquake received a relatively high response from various groups, especially public officials and government agency accounts. Twitter social media is also a place to think about grief and prayer, increase solidarity to assist, and become a media that reports condition quickly gives limitedgreetings online, and assist directly victims through donations
References
Alexandre Huang, Z., & Wang, R. (2019). Building a Network to “Tell China
Stories Well”: Chinese Diplomatic Communication Strategies on Twitter.
International Journal of Communication, 13, 2984–3007.
Amen, B., Faiz, S., & Do, T. T. (2022). Big data directed acyclic graph model for178
real-time COVID-19 twitter stream detection. Pattern Recognition, 123,
https://doi.org/10.1016/j.patcog.2021.108404
Amiresmaili, M., Zolala, F., Nekoei-Moghadam, M., Salavatian, S.,
Chashmyazdan, M., Soltani, A., & Savabi, J. (2021). Role of Social Media
in Earthquake: A Systematic Review. Iranian Red Crescent Medical
Journal, 23(5). https://doi.org/10.32592/ircmj.2021.23.5.447
Anson, S., Watson, H., Wadhwa, K., & Metz, K. (2017). Analysing social media
data for disaster preparedness: Understanding the opportunities and
barriers faced by humanitarian actors. International Journal of Disaster
Risk Reduction, 21, 131–139.
https://doi.org/10.1016/j.ijdrr.2016.11.014
Azmi, N. A., Fathani, A. T., Sadayi, D. P., & Fitriani, I. (2021). Social Media
Network Analysis (SNA): Identifikasi Komunikasi dan Penyebaran
Informasi Melalui Media Sosial Twitter. Jurnal Media Informatika
Budidarma, 5(4), 1422–1430. https://doi.org/10.30865/mib.v5i4.3257
BNPB. (2022). [UPDATE] 268 Warga Meninggal Dunia Akibat Gempa Cianjur.
https://bnpb.go.id/berita/-update-268-warga-meninggal-dunia-akibat-
gempa-cianjur-
Bogen, K. W., Mulla, M. M. M., Haikalis, M., & Orchowski, L. M. (2022). Sexual
Victimization Among Men: A Qualitative Analysis of the Twitter Hashtag
#UsToo. Journal of Interpersonal Violence, 37(9–10), 1–25.
https://doi.org/10.1177/0886260520967167
Brandão, C. (2015). P. Bazeley and K. Jackson, Qualitative Data Analysis with
NVivo (2nd ed.). Qualitative Research in Psychology, 12(4), 492–494.
https://doi.org/10.1080/14780887.2014.992750
Buntain, C. L., & Lim, J. K. (2018). #pray4victims: Consistencies in response to
disaster on Twitter. Proceedings of the ACM on Human-Computer
Interaction, 2(CSCW). https://doi.org/10.1145/3274294
Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016).
Crowd sourcing disaster management: The complex nature of Twitter
usage in Padang Indonesia. Safety Science, 90, 48–61.
https://doi.org/10.1016/j.ssci.2016.04.002
Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research
data: Is it as easy as it sounds? Currents in Pharmacy Teaching and
Learning, 10(6), 807–815. https://doi.org/10.1016/j.cptl.2018.03.019
Chen, S., Mao, J., Li, G., Ma, C., & Cao, Y. (2020). Uncovering sentiment and
retweet patterns of disaster-related tweets from a spatiotemporal
perspective – A case study of Hurricane Harvey. Telematics and179
Informatics, 47(October 2019), 101326.
https://doi.org/10.1016/j.tele.2019.101326
CNN Indonesia. (2022). 3 Penyebab Gempa Cianjur Sangat Merusak dan
Mematikan.
Derani, N. E. S., & Naidu, P. (2016). The Impact of Utilizing Social Media as a
Communication Platform during a Crisis within the Oil Industry. Procedia
Economics and Finance, 35(October 2015), 650–658.
https://doi.org/10.1016/s2212-5671(16)00080-0
Fang, J., Hu, J., Shi, X., & Zhao, L. (2019). Assessing disaster impacts and
response using social media data in China: A case study of 2016 Wuhan
rainstorm. International Journal of Disaster Risk Reduction, 34(December
, 275–282. https://doi.org/10.1016/j.ijdrr.2018.11.027
Hasfi, N., Fisher, M. R., & Sahide, M. A. K. (2021). Overlooking the victims:
Civic engagement on Twitter during Indonesia’s 2019 fire and haze
disaster. International Journal of Disaster Risk Reduction, 60(April),
https://doi.org/10.1016/j.ijdrr.2021.102271
Hermida, A., Lewis, S. C., & Zamith, R. (2014). Sourcing the Arab spring: A case
study of Andy Carvin’s sources on twitter during the Tunisian and
Egyptian revolutions. Journal of Computer-Mediated Communication,
(3), 479–499. https://doi.org/10.1111/jcc4.12074
Houston, J. B., Hawthorne, J., Perreault, M. F., Park, E. H., Goldstein Hode, M.,
Halliwell, M. R., Turner Mcgowen, S. E., Davis, R., Vaid, S., Mcelderry, J.
A., & Griffith, S. A. (2015). Social media and disasters: A functional
framework for social media use in disaster planning, response, and
research. Disasters, 39(1), 1–22. https://doi.org/10.1111/disa.12092
Isa, D., & Himelboim, I. (2018). A Social Networks Approach to Online Social
Movement: Social Mediators and Mediated Content in #FreeAJStaff
Twitter Network. Social Media and Society, 4(1).
https://doi.org/10.1177/2056305118760807
Juditha, C. (2021). The Communication Network of Online Prostitution in
Twitter Jaringan Komunikasi Prostitusi Daring di Twitter. Jurnal
ASPIKOM, 6(1), 13–28.
Karimiziarani, M., Jafarzadegan, K., Abbaszadeh, P., Shao, W., & Moradkhani,
H. (2022). Hazard risk awareness and disaster management: Extracting
the information content of twitter data. Sustainable Cities and Society,
(May 2021), 103577. https://doi.org/10.1016/j.scs.2021.103577
Karlsen, A. S., & Scott, K. D. (2019). Making sense of Starbucks’ anti-bias
training and the arrests of two African American men: A thematic180
analysis of Whites’ Facebook and Twitter comments. Discourse, Context
and Media, 32, 100332. https://doi.org/10.1016/j.dcm.2019.100332
Kim, T. (2014). Observation on copying and pasting behavior during the
Tohoku earthquake: Retweet pattern changes. International Journal of
Information Management, 34(4), 546–555.
https://doi.org/10.1016/j.ijinfomgt.2014.03.001
Kirana, M. C., Perkasa, N. P., Lubis, M. Z., & Fani, M. (2019). Visualisasi Kualitas
Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter.
Journal of Applied Informatics and Computing, 3(1), 23–32.
https://doi.org/10.30871/jaic.v0i0.1246
Kompas. (2022). Pasca-gempa Cianjur, Layanan Komunikasi yang Sempat
Terganggu Kini Mulai Pulih.
https://nasional.kompas.com/read/2022/11/22/06251681/pasca-
gempa-cianjur-layanan-komunikasi-yang-sempat-terganggu-kini-mulai
Laylavi, F., Rajabifard, A., & Kalantari, M. (2017). Event relatedness
assessment of Twitter messages for emergency response. Information
Processing and Management, 53(1), 266–280.
https://doi.org/10.1016/j.ipm.2016.09.002
Lestari, D. A., & Mahdiana, D. (2021). Penerapan Algoritma K-Nearest
Neighbor pada Twitter untuk Analisis Sentimen Masyarakat Terhadap
Larangan Mudik 2021. Informatik : Jurnal Ilmu Komputer, 17(2), 123.
https://doi.org/10.52958/iftk.v17i2.3629
Loilatu, M. J., Irawan, B., Salahudin, S., & Sihidi, I. T. (2021). Analysis of
Twitter’s Function as a Media communication of Public Transportation.
Jurnal Komunikasi, 13(1), 54. https://doi.org/10.24912/jk.v13i1.8707
Möller, C., Wang, J., & Nguyen, H. T. (2018). #Strongerthanwinston: Tourism
and crisis communication through Facebook following tropical cyclones
in Fiji. Tourism Management, 69(February), 272–284.
https://doi.org/10.1016/j.tourman.2018.05.014
Mukkamala, A., & Beck, R. (2018). The Role Of Social Media For Collective
Behavior Development. ECIS 2018 Proceedings.
Muralidharan, S., Rasmussen, L., Patterson, D., & Shin, J. H. (2011). Hope for
Haiti: An analysis of Facebook and Twitter usage during the earthquake
relief efforts. Public Relations Review, 37(2), 175–177.
https://doi.org/10.1016/j.pubrev.2011.01.010
Pourebrahim, N., Sultana, S., Edwards, J., Gochanour, A., & Mohanty, S.
(2019). Understanding communication dynamics on Twitter during
natural disasters: A case study of Hurricane Sandy. International Journal181
of Disaster Risk Reduction, 37(September 2018), 101176.
https://doi.org/10.1016/j.ijdrr.2019.101176
Prihantoro, E., Rakhman, F. R., & Ramadhani, R. W. (2021). Digital Movement
of Opinion Mobilization: SNA Study on #Dirumahaja Vs. #Pakaimasker.
Jurnal ASPIKOM, 6(1), 77. https://doi.org/10.24329/aspikom.v6i1.838
Ridho Fariz, T., Suhardono, S., & Verdiana, S. (2021). Pemanfaatan Data
Twitter Dalam Penanggulangan Bencana Banjir dan Longsor Use of
Twitter Data in Flood and Landslide Disaster Management. Cogito Smart
Journal, 7(1), 135–147.
Saini, S., Punhani, R., Bathla, R., & Shukla, V. K. (2019). Sentiment Analysis on
Twitter Data using R. 2019 International Conference on Automation,
Computational and Technology Management, ICACTM 2019, 68–72.
https://doi.org/10.1109/ICACTM.2019.8776685
Santoso, A. D. (2020). Tweets flooded in bandung 2016 floods: Connecting
individuals and organizations to disaster information. Indonesian Journal
of Geography, 51(3), 242–250. https://doi.org/10.22146/IJG.34767
Scarborough, W. J. (2018). Feminist Twitter and Gender Attitudes:
Opportunities and Limitations to Using Twitter in the Study of Public
Opinion. Socius, 4, 1–16. https://doi.org/10.1177/2378023118780760
Shan, S., Zhao, F., Wei, Y., & Liu, M. (2019). Disaster management 2.0: A real-
time disaster damage assessment model based on mobile social media
data—A case study of Weibo (Chinese Twitter). Safety Science,
(August 2018), 393–413. https://doi.org/10.1016/j.ssci.2019.02.029
Silver, C., & Lewins, A. (2007). QDA Miner 3. 2 (with WordStat & Simstat )
Distinguishing features and functions. Database, 2.
Son, J., Lee, H. K., Jin, S., & Lee, J. (2019). Content features of tweets for
effective communication during disasters: A media synchronicity theory
perspective. International Journal of Information Management,
(October 2018), 56–68.
https://doi.org/10.1016/j.ijinfomgt.2018.10.012
Sotiriadou, P., Brouwers, J., & Le, T. A. (2014). Choosing a qualitative data
analysis tool: A comparison of NVivo and Leximancer. Annals of Leisure
Research, 17(2), 218–234.
https://doi.org/10.1080/11745398.2014.902292
Stone, J. A., Flanders, K. J., & Can, S. H. (2022). Strategic communication?
Measurement and evaluation of Twitter use among municipal
governments. Government Information Quarterly, 39(4), 101755.
https://doi.org/10.1016/j.giq.2022.101755182
Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on
Twitter during a disaster: An analysis of tweets during Typhoon Haiyan
in the Philippines. Computers in Human Behavior, 50, 392–398.
https://doi.org/10.1016/j.chb.2015.04.020
Utomo, D. P., & Purba, B. (2019). Penerapan Datamining pada Data Gempa
Bumi Terhadap Potensi Tsunami di Indonesia. Prosiding Seminar
Nasional Riset Information Science (SENARIS), 1(September), 846.
https://doi.org/10.30645/senaris.v1i0.91
Vera-Burgos, C. M., & Griffin Padgett, D. R. (2020). Using Twitter for crisis
communications in a natural disaster: Hurricane Harvey. Heliyon, 6(9), 0–
https://doi.org/10.1016/j.heliyon.2020.e04804
Wang, R., Liu, W., & Gao, S. (2016). Hashtags and information virality in
networked social movement: Examining hashtag co-occurrence
patterns. Online Information Review, 40(7), 850–866.
https://doi.org/10.1108/OIR-12-2015-0378
Wang, Z., & Ye, X. (2018). Social media analytics for natural disaster
management. International Journal of Geographical Information Science,
(1), 49–72. https://doi.org/10.1080/13658816.2017.1367003
Wardyaningrum, D., & Hutomo, S. B. H. (2022). Transactional Communication
of Garut People in Dealing with Potential Natural Disaster. Komunikator,
(1), 53–66. https://doi.org/10.18196/jkm.13710
Woolf, N. H., & Silver, C. (2017). Qualitative analysis using MAXQDA: The five-
level QDA® method. In Qualitative Analysis Using MAXQDA: The Five-
Level QDA Method. Routledge. https://doi.org/10.4324/9781315268569
Wu, K., Wu, J., Ding, W., & Tang, R. (2021). Extracting disaster information
based on Sina Weibo in China: A case study of the 2019 Typhoon Lekima.
International Journal of Disaster Risk Reduction, 60(January), 102304.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.