ANALYSIS OF TWITTER SOCIAL MEDIA FUNCTIONS IN RESPONDING TO THE CIANJUR EARTHQUAKE IN INDONESIA

Authors

  • Gusti Naufal Rizky Perdana Universitas Brawijaya Indonesia
  • Andi Muhammad Rifqi Rusli Universitas Mulawarman Indonesia
  • Yaen Miftakhul Laily Universitas Brawijaya Indonesia

DOI:

https://doi.org/10.18326/inject.v9i2.735

Keywords:

Earthquake Disaster, Twitter, Social media, Public Response

Abstract

Social media Twitter as a place to respond disaster events that build an effective place to disseminate the latest information and communication users to discuss the current disaster. This research focuses on exploring the intensity of tweets related to analyzing the disaster content of tweets in discussions of the Cianjur earthquake on Twitter social media. This research uses a Qualitative Data Analysis (QDA) approach, which helps to know the network, content, and cloud using the Nvivo 12 Plus software. The study results stated that the intensity of the conversation on Twitter social media related to the Cianjur earthquake received a relatively high response from various groups, especially public officials and government agency accounts. Twitter social media is also a place to think about grief and prayer, increase solidarity to assist, and become a media that reports condition quickly gives limitedgreetings online, and assist directly victims through donations

References

Alexandre Huang, Z., & Wang, R. (2019). Building a Network to “Tell China

Stories Well”: Chinese Diplomatic Communication Strategies on Twitter.

International Journal of Communication, 13, 2984–3007.

Amen, B., Faiz, S., & Do, T. T. (2022). Big data directed acyclic graph model for178

real-time COVID-19 twitter stream detection. Pattern Recognition, 123,

https://doi.org/10.1016/j.patcog.2021.108404

Amiresmaili, M., Zolala, F., Nekoei-Moghadam, M., Salavatian, S.,

Chashmyazdan, M., Soltani, A., & Savabi, J. (2021). Role of Social Media

in Earthquake: A Systematic Review. Iranian Red Crescent Medical

Journal, 23(5). https://doi.org/10.32592/ircmj.2021.23.5.447

Anson, S., Watson, H., Wadhwa, K., & Metz, K. (2017). Analysing social media

data for disaster preparedness: Understanding the opportunities and

barriers faced by humanitarian actors. International Journal of Disaster

Risk Reduction, 21, 131–139.

https://doi.org/10.1016/j.ijdrr.2016.11.014

Azmi, N. A., Fathani, A. T., Sadayi, D. P., & Fitriani, I. (2021). Social Media

Network Analysis (SNA): Identifikasi Komunikasi dan Penyebaran

Informasi Melalui Media Sosial Twitter. Jurnal Media Informatika

Budidarma, 5(4), 1422–1430. https://doi.org/10.30865/mib.v5i4.3257

BNPB. (2022). [UPDATE] 268 Warga Meninggal Dunia Akibat Gempa Cianjur.

https://bnpb.go.id/berita/-update-268-warga-meninggal-dunia-akibat-

gempa-cianjur-

Bogen, K. W., Mulla, M. M. M., Haikalis, M., & Orchowski, L. M. (2022). Sexual

Victimization Among Men: A Qualitative Analysis of the Twitter Hashtag

#UsToo. Journal of Interpersonal Violence, 37(9–10), 1–25.

https://doi.org/10.1177/0886260520967167

Brandão, C. (2015). P. Bazeley and K. Jackson, Qualitative Data Analysis with

NVivo (2nd ed.). Qualitative Research in Psychology, 12(4), 492–494.

https://doi.org/10.1080/14780887.2014.992750

Buntain, C. L., & Lim, J. K. (2018). #pray4victims: Consistencies in response to

disaster on Twitter. Proceedings of the ACM on Human-Computer

Interaction, 2(CSCW). https://doi.org/10.1145/3274294

Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016).

Crowd sourcing disaster management: The complex nature of Twitter

usage in Padang Indonesia. Safety Science, 90, 48–61.

https://doi.org/10.1016/j.ssci.2016.04.002

Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research

data: Is it as easy as it sounds? Currents in Pharmacy Teaching and

Learning, 10(6), 807–815. https://doi.org/10.1016/j.cptl.2018.03.019

Chen, S., Mao, J., Li, G., Ma, C., & Cao, Y. (2020). Uncovering sentiment and

retweet patterns of disaster-related tweets from a spatiotemporal

perspective – A case study of Hurricane Harvey. Telematics and179

Informatics, 47(October 2019), 101326.

https://doi.org/10.1016/j.tele.2019.101326

CNN Indonesia. (2022). 3 Penyebab Gempa Cianjur Sangat Merusak dan

Mematikan.

Derani, N. E. S., & Naidu, P. (2016). The Impact of Utilizing Social Media as a

Communication Platform during a Crisis within the Oil Industry. Procedia

Economics and Finance, 35(October 2015), 650–658.

https://doi.org/10.1016/s2212-5671(16)00080-0

Fang, J., Hu, J., Shi, X., & Zhao, L. (2019). Assessing disaster impacts and

response using social media data in China: A case study of 2016 Wuhan

rainstorm. International Journal of Disaster Risk Reduction, 34(December

, 275–282. https://doi.org/10.1016/j.ijdrr.2018.11.027

Hasfi, N., Fisher, M. R., & Sahide, M. A. K. (2021). Overlooking the victims:

Civic engagement on Twitter during Indonesia’s 2019 fire and haze

disaster. International Journal of Disaster Risk Reduction, 60(April),

https://doi.org/10.1016/j.ijdrr.2021.102271

Hermida, A., Lewis, S. C., & Zamith, R. (2014). Sourcing the Arab spring: A case

study of Andy Carvin’s sources on twitter during the Tunisian and

Egyptian revolutions. Journal of Computer-Mediated Communication,

(3), 479–499. https://doi.org/10.1111/jcc4.12074

Houston, J. B., Hawthorne, J., Perreault, M. F., Park, E. H., Goldstein Hode, M.,

Halliwell, M. R., Turner Mcgowen, S. E., Davis, R., Vaid, S., Mcelderry, J.

A., & Griffith, S. A. (2015). Social media and disasters: A functional

framework for social media use in disaster planning, response, and

research. Disasters, 39(1), 1–22. https://doi.org/10.1111/disa.12092

Isa, D., & Himelboim, I. (2018). A Social Networks Approach to Online Social

Movement: Social Mediators and Mediated Content in #FreeAJStaff

Twitter Network. Social Media and Society, 4(1).

https://doi.org/10.1177/2056305118760807

Juditha, C. (2021). The Communication Network of Online Prostitution in

Twitter Jaringan Komunikasi Prostitusi Daring di Twitter. Jurnal

ASPIKOM, 6(1), 13–28.

Karimiziarani, M., Jafarzadegan, K., Abbaszadeh, P., Shao, W., & Moradkhani,

H. (2022). Hazard risk awareness and disaster management: Extracting

the information content of twitter data. Sustainable Cities and Society,

(May 2021), 103577. https://doi.org/10.1016/j.scs.2021.103577

Karlsen, A. S., & Scott, K. D. (2019). Making sense of Starbucks’ anti-bias

training and the arrests of two African American men: A thematic180

analysis of Whites’ Facebook and Twitter comments. Discourse, Context

and Media, 32, 100332. https://doi.org/10.1016/j.dcm.2019.100332

Kim, T. (2014). Observation on copying and pasting behavior during the

Tohoku earthquake: Retweet pattern changes. International Journal of

Information Management, 34(4), 546–555.

https://doi.org/10.1016/j.ijinfomgt.2014.03.001

Kirana, M. C., Perkasa, N. P., Lubis, M. Z., & Fani, M. (2019). Visualisasi Kualitas

Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter.

Journal of Applied Informatics and Computing, 3(1), 23–32.

https://doi.org/10.30871/jaic.v0i0.1246

Kompas. (2022). Pasca-gempa Cianjur, Layanan Komunikasi yang Sempat

Terganggu Kini Mulai Pulih.

https://nasional.kompas.com/read/2022/11/22/06251681/pasca-

gempa-cianjur-layanan-komunikasi-yang-sempat-terganggu-kini-mulai

Laylavi, F., Rajabifard, A., & Kalantari, M. (2017). Event relatedness

assessment of Twitter messages for emergency response. Information

Processing and Management, 53(1), 266–280.

https://doi.org/10.1016/j.ipm.2016.09.002

Lestari, D. A., & Mahdiana, D. (2021). Penerapan Algoritma K-Nearest

Neighbor pada Twitter untuk Analisis Sentimen Masyarakat Terhadap

Larangan Mudik 2021. Informatik : Jurnal Ilmu Komputer, 17(2), 123.

https://doi.org/10.52958/iftk.v17i2.3629

Loilatu, M. J., Irawan, B., Salahudin, S., & Sihidi, I. T. (2021). Analysis of

Twitter’s Function as a Media communication of Public Transportation.

Jurnal Komunikasi, 13(1), 54. https://doi.org/10.24912/jk.v13i1.8707

Möller, C., Wang, J., & Nguyen, H. T. (2018). #Strongerthanwinston: Tourism

and crisis communication through Facebook following tropical cyclones

in Fiji. Tourism Management, 69(February), 272–284.

https://doi.org/10.1016/j.tourman.2018.05.014

Mukkamala, A., & Beck, R. (2018). The Role Of Social Media For Collective

Behavior Development. ECIS 2018 Proceedings.

Muralidharan, S., Rasmussen, L., Patterson, D., & Shin, J. H. (2011). Hope for

Haiti: An analysis of Facebook and Twitter usage during the earthquake

relief efforts. Public Relations Review, 37(2), 175–177.

https://doi.org/10.1016/j.pubrev.2011.01.010

Pourebrahim, N., Sultana, S., Edwards, J., Gochanour, A., & Mohanty, S.

(2019). Understanding communication dynamics on Twitter during

natural disasters: A case study of Hurricane Sandy. International Journal181

of Disaster Risk Reduction, 37(September 2018), 101176.

https://doi.org/10.1016/j.ijdrr.2019.101176

Prihantoro, E., Rakhman, F. R., & Ramadhani, R. W. (2021). Digital Movement

of Opinion Mobilization: SNA Study on #Dirumahaja Vs. #Pakaimasker.

Jurnal ASPIKOM, 6(1), 77. https://doi.org/10.24329/aspikom.v6i1.838

Ridho Fariz, T., Suhardono, S., & Verdiana, S. (2021). Pemanfaatan Data

Twitter Dalam Penanggulangan Bencana Banjir dan Longsor Use of

Twitter Data in Flood and Landslide Disaster Management. Cogito Smart

Journal, 7(1), 135–147.

Saini, S., Punhani, R., Bathla, R., & Shukla, V. K. (2019). Sentiment Analysis on

Twitter Data using R. 2019 International Conference on Automation,

Computational and Technology Management, ICACTM 2019, 68–72.

https://doi.org/10.1109/ICACTM.2019.8776685

Santoso, A. D. (2020). Tweets flooded in bandung 2016 floods: Connecting

individuals and organizations to disaster information. Indonesian Journal

of Geography, 51(3), 242–250. https://doi.org/10.22146/IJG.34767

Scarborough, W. J. (2018). Feminist Twitter and Gender Attitudes:

Opportunities and Limitations to Using Twitter in the Study of Public

Opinion. Socius, 4, 1–16. https://doi.org/10.1177/2378023118780760

Shan, S., Zhao, F., Wei, Y., & Liu, M. (2019). Disaster management 2.0: A real-

time disaster damage assessment model based on mobile social media

data—A case study of Weibo (Chinese Twitter). Safety Science,

(August 2018), 393–413. https://doi.org/10.1016/j.ssci.2019.02.029

Silver, C., & Lewins, A. (2007). QDA Miner 3. 2 (with WordStat & Simstat )

Distinguishing features and functions. Database, 2.

Son, J., Lee, H. K., Jin, S., & Lee, J. (2019). Content features of tweets for

effective communication during disasters: A media synchronicity theory

perspective. International Journal of Information Management,

(October 2018), 56–68.

https://doi.org/10.1016/j.ijinfomgt.2018.10.012

Sotiriadou, P., Brouwers, J., & Le, T. A. (2014). Choosing a qualitative data

analysis tool: A comparison of NVivo and Leximancer. Annals of Leisure

Research, 17(2), 218–234.

https://doi.org/10.1080/11745398.2014.902292

Stone, J. A., Flanders, K. J., & Can, S. H. (2022). Strategic communication?

Measurement and evaluation of Twitter use among municipal

governments. Government Information Quarterly, 39(4), 101755.

https://doi.org/10.1016/j.giq.2022.101755182

Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on

Twitter during a disaster: An analysis of tweets during Typhoon Haiyan

in the Philippines. Computers in Human Behavior, 50, 392–398.

https://doi.org/10.1016/j.chb.2015.04.020

Utomo, D. P., & Purba, B. (2019). Penerapan Datamining pada Data Gempa

Bumi Terhadap Potensi Tsunami di Indonesia. Prosiding Seminar

Nasional Riset Information Science (SENARIS), 1(September), 846.

https://doi.org/10.30645/senaris.v1i0.91

Vera-Burgos, C. M., & Griffin Padgett, D. R. (2020). Using Twitter for crisis

communications in a natural disaster: Hurricane Harvey. Heliyon, 6(9), 0–

https://doi.org/10.1016/j.heliyon.2020.e04804

Wang, R., Liu, W., & Gao, S. (2016). Hashtags and information virality in

networked social movement: Examining hashtag co-occurrence

patterns. Online Information Review, 40(7), 850–866.

https://doi.org/10.1108/OIR-12-2015-0378

Wang, Z., & Ye, X. (2018). Social media analytics for natural disaster

management. International Journal of Geographical Information Science,

(1), 49–72. https://doi.org/10.1080/13658816.2017.1367003

Wardyaningrum, D., & Hutomo, S. B. H. (2022). Transactional Communication

of Garut People in Dealing with Potential Natural Disaster. Komunikator,

(1), 53–66. https://doi.org/10.18196/jkm.13710

Woolf, N. H., & Silver, C. (2017). Qualitative analysis using MAXQDA: The five-

level QDA® method. In Qualitative Analysis Using MAXQDA: The Five-

Level QDA Method. Routledge. https://doi.org/10.4324/9781315268569

Wu, K., Wu, J., Ding, W., & Tang, R. (2021). Extracting disaster information

based on Sina Weibo in China: A case study of the 2019 Typhoon Lekima.

International Journal of Disaster Risk Reduction, 60(January), 102304.

https://doi.org/10.1016/j.ijdrr.2021.102304

Downloads

Published

2023-12-22

How to Cite

Perdana, G. N. R., Rusli, A. M. R., & Laily, Y. M. (2023). ANALYSIS OF TWITTER SOCIAL MEDIA FUNCTIONS IN RESPONDING TO THE CIANJUR EARTHQUAKE IN INDONESIA. INJECT (Interdisciplinary Journal of Communication), 8(2), 165–182. https://doi.org/10.18326/inject.v9i2.735

Issue

Section

Articles